Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Neurol Res Pract ; 5(1): 55, 2023 Oct 19.
Article En | MEDLINE | ID: mdl-37853454

INTRODUCTION: Diffuse midline gliomas (DMG) are universally lethal central nervous system tumors that carry almost unanimously the clonal driver mutation histone-3 K27M (H3K27M). The single amino acid substitution of lysine to methionine harbors a neoantigen that is presented in tumor tissue. The long peptide vaccine H3K27M-vac targeting this major histocompatibility complex class II (MHC class II)-restricted neoantigen induces mutation-specific immune responses that suppress the growth of H3K27M+ flank tumors in an MHC-humanized rodent model. METHODS: INTERCEPT H3 is a non-controlled open label, single arm, multicenter national phase 1 trial to assess safety, tolerability and immunogenicity of H3K27M-vac in combination with standard radiotherapy and the immune checkpoint inhibitor atezolizumab (ATE). 15 adult patients with newly diagnosed K27M-mutant histone-3.1 (H3.1K27M) or histone-3.3 (H3.3K27M) DMG will be enrolled in this trial. The 27mer peptide vaccine H3K27M-vac will be administered concomitantly to standard radiotherapy (RT) followed by combinatorial treatment with the programmed death-ligand 1 (PD-L1) targeting antibody ATE. The first three vaccines will be administered bi-weekly (q2w) followed by a dose at the beginning of recovery after RT and six-weekly administrations of doses 5 to 11 thereafter. In a safety lead-in, the first three patients (pts. 1-3) will be enrolled sequentially. PERSPECTIVE: H3K27M-vac is a neoepitope targeting long peptide vaccine derived from the clonal driver mutation H3K27M in DMG. The INTERCEPT H3 trial aims at demonstrating (1) safety and (2) immunogenicity of repeated fixed dose vaccinations of H3K27M-vac administered with RT and ATE in adult patients with newly diagnosed H3K27M-mutant DMG. TRIAL REGISTRATION: NCT04808245.

2.
J Inherit Metab Dis ; 2023 Jul 15.
Article En | MEDLINE | ID: mdl-37452721

Elevated serum prolactin concentrations occur in inherited disorders of biogenic amine metabolism because dopamine deficiency leads to insufficient inhibition of prolactin secretion. This work from the International Working Group on Neurotransmitter Related Disorders (iNTD) presents the results of the first standardized study on levodopa-refractory hyperprolactinemia (LRHP; >1000 mU/L) and pituitary magnetic resonance imaging (MRI) abnormalities in patients with inherited disorders of biogenic amine metabolism. Twenty-six individuals had LRHP or abnormal pituitary findings on MRI. Tetrahydrobiopterin deficiencies were the most common diagnoses (n = 22). The median age at diagnosis of LRHP was 16 years (range: 2.5-30, 1st-3rd quartiles: 12.25-17 years). Twelve individuals (nine females) had symptoms attributed to hyperprolactinemia: menstruation-related abnormalities (n = 7), pubertal delay or arrest (n = 5), galactorrhea (n = 3), and decreased sexual functions (n = 2). MRI of the pituitary gland was obtained in 21 individuals; six had heterogeneity/hyperplasia of the gland, five had adenoma, and 10 had normal findings. Eleven individuals were treated with the dopamine agonist cabergoline, ameliorating the hyperprolactinemia-related symptoms in all those assessed. Routine monitoring of these symptoms together with prolactin concentrations, especially after the first decade of life, should be taken into consideration during follow-up evaluations. The potential of slow-release levodopa formulations and low-dose dopamine agonists as part of first-line therapy in the prevention and treatment of hyperprolactinemia should be investigated further in animal studies and human trials. This work adds hyperprolactinemia-related findings to the current knowledge of the phenotypic spectrum of inherited disorders of biogenic amine metabolism.

3.
J Inherit Metab Dis ; 46(3): 482-519, 2023 05.
Article En | MEDLINE | ID: mdl-36221165

Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Humans , Glutaryl-CoA Dehydrogenase , Lysine/metabolism , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/therapy , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Glutarates/metabolism
4.
Eur J Paediatr Neurol ; 41: 71-79, 2022 Nov.
Article En | MEDLINE | ID: mdl-36368233

BACKGROUND: The clinical spectrum of Pelizaeus-Merzbacher disease (PMD), a common hypomyelinating leukodystrophy, ranges between severe neonatal onset and a relatively stable presentation with later onset and mainly lower limb spasticity. In view of emerging treatment options and in order to grade severity and progression, we developed a PMD myelination score. METHODS: Myelination was scored in 15 anatomic sites (items) on conventional T2-and T1w images in controls (n = 328) and 28 PMD patients (53 MRI; n = 5 connatal, n = 3 transitional, n = 10 classic, n = 3 intermediate, n = 2 PLP0, n = 3 SPG2, n = 2 female). Items included in the score were selected based on interrater variability, practicability of scoring and importance of scoring items for discrimination between patients and controls and between patient subgroups. Bicaudate ratio, maximal sagittal pons diameter, and visual assessment of midsagittal corpus callosum were separately recorded. RESULTS: The resulting myelination score consisting of 8 T2-and 5 T1-items differentiates patients and controls as well as patient subgroups at first MRI. There was very little myelin and early loss in severely affected connatal and transitional patients, more, though still severely deficient myelin in classic PMD, ongoing myelination during childhood in classic and intermediate PMD. Atrophy, present in 50% of patients, increased with age at imaging. CONCLUSIONS: The proposed myelination score allows stratification of PMD patients and standardized assessment of follow-up. Loss of myelin in severely affected and PLP0 patients and progressing myelination in classic and intermediate PMD must be considered when evaluating treatment efficacy.


Pelizaeus-Merzbacher Disease , Infant, Newborn , Humans , Female , Myelin Proteolipid Protein/genetics , Mutation , Magnetic Resonance Imaging , Corpus Callosum/diagnostic imaging
7.
Eur J Hum Genet ; 30(3): 298-306, 2022 03.
Article En | MEDLINE | ID: mdl-35017693

TUBA1A tubulinopathy is a rare neurodevelopmental disorder associated with brain malformations as well as early-onset and intractable epilepsy. As pathomechanisms and genotype-phenotype correlations are not completely understood, we aimed to provide further insights into the phenotypic and genetic spectrum. We here present a multicenter case series of ten unrelated individuals from four European countries using systematic MRI re-evaluation, protein structure analysis, and prediction score modeling. In two cases, pregnancy was terminated due to brain malformations. Amongst the eight living individuals, the phenotypic range showed various severity. Global developmental delay and severe motor impairment with tetraparesis was present in 63% and 50% of the subjects, respectively. Epilepsy was observed in 75% of the cases, which showed infantile onset in 83% and a refractory course in 50%. One individual presented a novel TUBA1A-associated electroclinical phenotype with evolvement from early myoclonic encephalopathy to continuous spike-and-wave during sleep. Neuroradiological features comprised a heterogeneous spectrum of cortical and extracortical malformations including rare findings such as cobblestone lissencephaly and subcortical band heterotopia. Two individuals developed hydrocephalus with subsequent posterior infarction. We report four novel and five previously published TUBA1A missense variants whose resulting amino acid substitutions likely affect longitudinal, lateral, and motor protein interactions as well as GTP binding. Assessment of pathogenic and benign variant distributions in synopsis with prediction scores revealed sections of variant enrichment and intolerance to missense variation. We here extend the clinical, neuroradiological, and genetic spectrum of TUBA1A tubulinopathy and provide insights into residue-specific pathomechanisms and genotype-phenotype correlations.


Epilepsy , Lissencephaly , Nervous System Malformations , Epilepsy/diagnosis , Epilepsy/genetics , Female , Humans , Lissencephaly/genetics , Mutation , Mutation, Missense , Phenotype , Pregnancy , Tubulin/genetics
8.
J Inherit Metab Dis ; 44(6): 1343-1352, 2021 11.
Article En | MEDLINE | ID: mdl-34515344

Subdural hematoma (SDH) was initially reported in 20% to 30% of patients with glutaric aciduria type 1 (GA1). A recent retrospective study found SDH in 4% of patients, but not in patients identified by newborn screening (NBS). 168 MRIs of 69 patients with GA1 (age at MRI 9 days - 73.8 years, median 3.2 years) were systematically reviewed for presence of SDH, additional MR and clinical findings in order to investigate the frequency of SDH and potential risk factors. SDH was observed in eight high-excreting patients imaged between 5.8 and 24.4 months, namely space-occupying SDH in two patients after minor accidental trauma and SDH as an incidental finding in six patients without trauma. In patients without trauma imaged at 3 to 30 months (n = 36, 25 NBS, 27/9 high/low excreters), incidence of SDH was 16.7% (16% in NBS). SDH was more common after acute (33.3%) than insidious onset of dystonia (14.3%) or in asymptomatic patients (5.9%). It was only seen in patients with wide frontoparietal CSF spaces and frontotemporal hypoplasia. High excreters were over-represented among patients with SDH (6/27 vs 0/9 low excreters), acute onset (10/12), and wide frontoparietal CSF spaces (16/19). Incidental SDH occurs despite NBS and early treatment in approximately one in six patients with GA1 imaged during late infancy and early childhood. Greater risk of high excreters is morphologically associated with more frequent enlargement of external CSF spaces including frontotemporal hypoplasia, and may be furthered aggravated by more pronounced alterations of cerebral blood volume and venous pressure.


Amino Acid Metabolism, Inborn Errors/complications , Brain Diseases, Metabolic/complications , Brain/pathology , Glutaryl-CoA Dehydrogenase/deficiency , Hematoma, Subdural/etiology , Adolescent , Adult , Aged , Amino Acid Metabolism, Inborn Errors/diagnosis , Brain Diseases, Metabolic/diagnosis , Child , Child, Preschool , Female , Germany , Hematoma, Subdural/diagnostic imaging , Humans , Incidence , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Middle Aged , Risk Factors , Young Adult
9.
Nature ; 592(7854): 463-468, 2021 04.
Article En | MEDLINE | ID: mdl-33762734

Mutated isocitrate dehydrogenase 1 (IDH1) defines a molecularly distinct subtype of diffuse glioma1-3. The most common IDH1 mutation in gliomas affects codon 132 and encodes IDH1(R132H), which harbours a shared clonal neoepitope that is presented on major histocompatibility complex (MHC) class II4,5. An IDH1(R132H)-specific peptide vaccine (IDH1-vac) induces specific therapeutic T helper cell responses that are effective against IDH1(R132H)+ tumours in syngeneic MHC-humanized mice4,6-8. Here we describe a multicentre, single-arm, open-label, first-in-humans phase I trial that we carried out in 33 patients with newly diagnosed World Health Organization grade 3 and 4 IDH1(R132H)+ astrocytomas (Neurooncology Working Group of the German Cancer Society trial 16 (NOA16), ClinicalTrials.gov identifier NCT02454634). The trial met its primary safety endpoint, with vaccine-related adverse events restricted to grade 1. Vaccine-induced immune responses were observed in 93.3% of patients across multiple MHC alleles. Three-year progression-free and death-free rates were 0.63 and 0.84, respectively. Patients with immune responses showed a two-year progression-free rate of 0.82. Two patients without an immune response showed tumour progression within two years of first diagnosis. A mutation-specificity score that incorporates the duration and level of vaccine-induced IDH1(R132H)-specific T cell responses was associated with intratumoral presentation of the IDH1(R132H) neoantigen in pre-treatment tumour tissue. There was a high frequency of pseudoprogression, which indicates intratumoral inflammatory reactions. Pseudoprogression was associated with increased vaccine-induced peripheral T cell responses. Combined single-cell RNA and T cell receptor sequencing showed that tumour-infiltrating CD40LG+ and CXCL13+ T helper cell clusters in a patient with pseudoprogression were dominated by a single IDH1(R132H)-reactive T cell receptor.


Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Glioma/diagnosis , Glioma/therapy , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/immunology , Mutation , Adult , Cells, Cultured , Disease Progression , Female , Glioma/genetics , Glioma/immunology , Humans , Male , Mutant Proteins/genetics , Mutant Proteins/immunology , Phenotype , Receptors, Antigen, T-Cell/immunology , Survival Rate , T-Lymphocytes/immunology
10.
J Inherit Metab Dis ; 44(4): 1070-1082, 2021 07.
Article En | MEDLINE | ID: mdl-33443316

Inherited monoamine neurotransmitter disorders (iMNDs) are rare disorders with clinical manifestations ranging from mild infantile hypotonia, movement disorders to early infantile severe encephalopathy. Neuroimaging has been reported as non-specific. We systematically analyzed brain MRIs in order to characterize and better understand neuroimaging changes and to re-evaluate the diagnostic role of brain MRI in iMNDs. 81 MRIs of 70 patients (0.1-52.9 years, 39 patients with tetrahydrobiopterin deficiencies, 31 with primary disorders of monoamine metabolism) were retrospectively analyzed and clinical records reviewed. 33/70 patients had MRI changes, most commonly atrophy (n = 24). Eight patients, six with dihydropteridine reductase deficiency (DHPR), had a common pattern of bilateral parieto-occipital and to a lesser extent frontal and/or cerebellar changes in arterial watershed zones. Two patients imaged after acute severe encephalopathy had signs of profound hypoxic-ischemic injury and a combination of deep gray matter and watershed injury (aromatic l-amino acid decarboxylase (AADCD), tyrosine hydroxylase deficiency (THD)). Four patients had myelination delay (AADCD; THD); two had changes characteristic of post-infantile onset neuronal disease (AADCD, monoamine oxidase A deficiency), and nine T2-hyperintensity of central tegmental tracts. iMNDs are associated with MRI patterns consistent with chronic effects of a neuronal disorder and signs of repetitive injury to cerebral and cerebellar watershed areas, in particular in DHPRD. These will be helpful in the (neuroradiological) differential diagnosis of children with unknown disorders and monitoring of iMNDs. We hypothesize that deficiency of catecholamines and/or tetrahydrobiopterin increase the incidence of and the CNS susceptibility to vascular dysfunction.


Amino Acid Metabolism, Inborn Errors/diagnostic imaging , Amino Acid Metabolism, Inborn Errors/pathology , Brain/pathology , Magnetic Resonance Imaging , Adolescent , Adult , Brain/diagnostic imaging , Brain Mapping/methods , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Retrospective Studies , Young Adult
11.
J Neurooncol ; 149(3): 499-510, 2020 Sep.
Article En | MEDLINE | ID: mdl-33026636

INTRODUCTION: A hallmark of pediatric low-grade glioma (pLGG) is aberrant signaling of the mitogen activated protein kinase (MAPK) pathway. Hence, inhibition of MAPK signaling using small molecule inhibitors such as MEK inhibitors (MEKi) may be a promising strategy. METHODS: In this multi-center retrospective centrally reviewed study, we analyzed 18 patients treated with the MEKi trametinib for progressive pLGG as an individual treatment decision between 2015 and 2019. We have investigated radiological response as per central radiology review, molecular classification and investigator observed toxicity. RESULTS: We observed 6 partial responses (PR), 2 minor responses (MR), and 10 stable diseases (SD) as best overall responses. Disease control rate (DCR) was 100% under therapy. Responses were observed in KIAA1549:BRAF- as well as neurofibromatosis type 1 (NF1)-driven tumors. Median treatment time was 12.5 months (range: 2 to 27 months). Progressive disease was observed in three patients after cessation of trametinib treatment within a median time of 3 (2-4) months. Therapy related adverse events occurred in 16/18 patients (89%). Eight of 18 patients (44%) experienced severe adverse events (CTCAE III and/or IV; most commonly skin rash and paronychia) requiring dose reduction in 6/18 patients (33%), and discontinuation of treatment in 2/18 patients (11%). CONCLUSIONS: Trametinib was an active and feasible treatment for progressive pLGG leading to disease control in all patients. However, treatment related toxicity interfered with treatment in individual patients, and disease control after MEKi withdrawal was not sustained in a fraction of patients. Our data support in-class efficacy of MEKi in pLGGs and necessity for upfront randomized testing of trametinib against current standard chemotherapy regimens.


Antineoplastic Agents/therapeutic use , Glioma/drug therapy , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Child , Child, Preschool , Female , Follow-Up Studies , Glioma/pathology , Humans , Infant , Male , Prognosis , Retrospective Studies
12.
Article En | MEDLINE | ID: mdl-32923898

PURPOSE: Children with pediatric gliomas harboring a BRAF V600E mutation have poor outcomes with current chemoradiotherapy strategies. Our aim was to study the role of targeted BRAF inhibition in these tumors. PATIENTS AND METHODS: We collected clinical, imaging, molecular, and outcome information from patients with BRAF V600E-mutated glioma treated with BRAF inhibition across 29 centers from multiple countries. RESULTS: Sixty-seven patients were treated with BRAF inhibition (pediatric low-grade gliomas [PLGGs], n = 56; pediatric high-grade gliomas [PHGGs], n = 11) for up to 5.6 years. Objective responses were observed in 80% of PLGGs, compared with 28% observed with conventional chemotherapy (P < .001). These responses were rapid (median, 4 months) and sustained in 86% of tumors up to 5 years while receiving therapy. After discontinuation of BRAF inhibition, 76.5% (13 of 17) of patients with PLGG experienced rapid progression (median, 2.3 months). However, upon rechallenge with BRAF inhibition, 90% achieved an objective response. Poor prognostic factors in conventional therapies, such as concomitant homozygous deletion of CDKN2A, were not associated with lack of response to BRAF inhibition. In contrast, only 36% of those with PHGG responded to BRAF inhibition, with all but one tumor progressing within 18 months. In PLGG, responses translated to 3-year progression-free survival of 49.6% (95% CI, 35.3% to 69.5%) versus 29.8% (95% CI, 20% to 44.4%) for BRAF inhibition versus chemotherapy, respectively (P = .02). CONCLUSION: Use of BRAF inhibition results in robust and durable responses in BRAF V600E-mutated PLGG. Prospective studies are required to determine long-term survival and functional outcomes with BRAF inhibitor therapy in childhood gliomas.

13.
Clin Genet ; 98(5): 507-514, 2020 11.
Article En | MEDLINE | ID: mdl-32799315

Rare pathogenic EIF2S3 missense and terminal deletion variants cause the X-linked intellectual disability (ID) syndrome MEHMO, or a milder phenotype including pancreatic dysfunction and hypopituitarism. We present two unrelated male patients who carry novel EIF2S3 pathogenic missense variants (p.(Thr144Ile) and p.(Ile159Leu)) thereby broadening the limited genetic spectrum and underscoring clinically variable expressivity of MEHMO. While the affected male with p.(Thr144Ile) presented with severe motor delay, severe microcephaly, moderate ID, epileptic seizures responsive to treatments, hypogenitalism, central obesity, facial features, and diabetes, the affected male with p.(Ile159Leu) presented with moderate ID, mild motor delay, microcephaly, epileptic seizures resistant to treatment, central obesity, and mild facial features. Both variants are located in the highly conserved guanine nucleotide binding domain of the EIF2S3 encoded eIF2γ subunit of the heterotrimeric translation initiation factor 2 (eIF2) complex. Further, we investigated both variants in a structural model and in yeast. The reduced growth rates and lowered fidelity of translation with increased initiation at non-AUG codons observed for both mutants in these studies strongly support pathogenicity of the variants.


Epilepsy/genetics , Eukaryotic Initiation Factor-2/genetics , Genitalia/abnormalities , Hypogonadism/genetics , Mental Retardation, X-Linked/genetics , Microcephaly/genetics , Obesity/genetics , Protein Biosynthesis , Adolescent , Child , Child, Preschool , Epilepsy/pathology , Female , Genetic Predisposition to Disease , Genitalia/pathology , Humans , Hypogonadism/pathology , Infant , Male , Mental Retardation, X-Linked/pathology , Microcephaly/pathology , Mutation/genetics , Mutation, Missense/genetics , Obesity/pathology
14.
Genet Med ; 22(11): 1863-1873, 2020 11.
Article En | MEDLINE | ID: mdl-32699352

PURPOSE: Biallelic variants in LARS1, coding for the cytosolic leucyl-tRNA synthetase, cause infantile liver failure syndrome 1 (ILFS1). Since its description in 2012, there has been no systematic analysis of the clinical spectrum and genetic findings. METHODS: Individuals with biallelic variants in LARS1 were included through an international, multicenter collaboration including novel and previously published patients. Clinical variables were analyzed and functional studies were performed in patient-derived fibroblasts. RESULTS: Twenty-five individuals from 15 families were ascertained including 12 novel patients with eight previously unreported variants. The most prominent clinical findings are recurrent elevation of liver transaminases up to liver failure and encephalopathic episodes, both triggered by febrile illness. Magnetic resonance image (MRI) changes during an encephalopathic episode can be consistent with metabolic stroke. Furthermore, growth retardation, microcytic anemia, neurodevelopmental delay, muscular hypotonia, and infection-related seizures are prevalent. Aminoacylation activity is significantly decreased in all patient cells studied upon temperature elevation in vitro. CONCLUSION: ILFS1 is characterized by recurrent elevation of liver transaminases up to liver failure in conjunction with abnormalities of growth, blood, nervous system, and musculature. Encephalopathic episodes with seizures can occur independently from liver crises and may present with metabolic stroke.


Liver Failure , Humans , Muscle Hypotonia , Mutation , Seizures
15.
BMC Cancer ; 20(1): 523, 2020 Jun 05.
Article En | MEDLINE | ID: mdl-32503469

BACKGROUND: Pediatric patients with relapsed or refractory disease represent a population with a desperate medical need. The aim of the INFORM (INdividualized Therapy FOr Relapsed Malignancies in Childhood) program is to translate next generation molecular diagnostics into a biomarker driven treatment strategy. The program consists of two major foundations: the INFORM registry providing a molecular screening platform and the INFORM2 series of biomarker driven phase I/II trials. The INFORM2 NivEnt trial aims to determine the recommended phase 2 dose (RP2D) of the combination treatment of nivolumab and entinostat (phase I) and to evaluate activity and safety (phase II). METHODS: This is an exploratory non-randomized, open-label, multinational and multicenter seamless phase I/II trial in children and adolescents with relapsed / refractory or progressive high-risk solid tumors and CNS tumors. The phase I is divided in 2 age cohorts: 12-21 years and 6-11 years and follows a 3 + 3 design with two dose levels for entinostat (2 mg/m2 and 4 mg/m2 once per week) and fixed dose nivolumab (3 mg/kg every 2 weeks). Patients entering the trial on RP2D can seamlessly enter phase II which consists of a biomarker defined four group basket trial: high mutational load (group A), high PD-L1 mRNA expression (group B), focal MYC(N) amplification (group C), low mutational load and low PD-L1 mRNA expression and no MYC(N) amplification (group D). A Bayesian adaptive design will be used to early stop cohorts that fail to show evidence of activity. The maximum number of patients is 128. DISCUSSION: This trial intends to exploit the immune enhancing effects of entinostat on nivolumab using an innovative biomarker driven approach in order to maximize the chance of detecting signs of activity. It prevents exposure to unnecessary risks by applying the Bayesian adaptive design for early stopping for futility. The adaptive biomarker driven design provides an innovative approach accelerating drug development and reducing exposure to investigational treatments in these vulnerable children at the same time. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03838042. Registered on 12 February 2019.


Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Benzamides/administration & dosage , Biomarkers, Tumor/analysis , Neoplasms/drug therapy , Nivolumab/administration & dosage , Pyridines/administration & dosage , Adolescent , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bayes Theorem , Benzamides/adverse effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Child , Dose-Response Relationship, Drug , Drug Monitoring/methods , Drug Resistance, Neoplasm , Female , Humans , Male , Medical Futility , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/pathology , Nivolumab/adverse effects , Precision Medicine/methods , Pyridines/adverse effects , Treatment Outcome , Young Adult
16.
Neurogenetics ; 21(2): 121-133, 2020 04.
Article En | MEDLINE | ID: mdl-31940116

Biallelic variants in POLR3A cause 4H leukodystrophy, characterized by hypomyelination in combination with cerebellar and pyramidal signs and variable non-neurological manifestations. Basal ganglia are spared in 4H leukodystrophy, and dystonia is not prominent. Three patients with variants in POLR3A, an atypical presentation with dystonia, and MR involvement of putamen and caudate nucleus (striatum) and red nucleus have previously been reported. Genetic, clinical findings and 18 MRI scans from nine patients with homozygous or compound heterozygous POLR3A variants and predominant striatal changes were retrospectively reviewed in order to characterize the striatal variant of POLR3A-associated disease. Prominent extrapyramidal involvement was the predominant clinical sign in all patients. The three youngest children were severely affected with muscle hypotonia, impaired head control, and choreic movements. Presentation of the six older patients was milder. Two brothers diagnosed with juvenile parkinsonism were homozygous for the c.1771-6C > G variant in POLR3A; the other seven either carried c.1771-6C > G (n = 1) or c.1771-7C > G (n = 7) together with another variant (missense, synonymous, or intronic). Striatal T2-hyperintensity and atrophy together with involvement of the superior cerebellar peduncles were characteristic. Additional MRI findings were involvement of dentate nuclei, hila, or peridentate white matter (3, 6, and 4/9), inferior cerebellar peduncles (6/9), red nuclei (2/9), and abnormal myelination of pyramidal and visual tracts (6/9) but no frank hypomyelination. Clinical and MRI findings in patients with a striatal variant of POLR3A-related disease are distinct from 4H leukodystrophy and associated with one of two intronic variants, c.1771-6C > G or c.1771-7C > G, in combination with another POLR3A variant.


Movement Disorders/genetics , Movement Disorders/pathology , Mutation , Neostriatum/pathology , RNA Polymerase III/genetics , Adult , Basal Ganglia/pathology , Brain/pathology , Child, Preschool , Female , Humans , Infant , Male , White Matter/pathology , Young Adult
17.
Neurology ; 92(24): e2754-e2763, 2019 06 11.
Article En | MEDLINE | ID: mdl-31076534

OBJECTIVE: Imaging necrosis on MRI scans was assessed and compared to outcome measures of the European Organisation for Research and Treatment of Cancer 26101 phase III trial that compared single-agent lomustine with lomustine plus bevacizumab in patients with progressive glioblastoma. METHODS: MRI in this post hoc analysis was available for 359 patients (lomustine = 127, lomustine + bevacizumab = 232). First, imaging necrosis at baseline being formally measurable (>10 × 10 mm, given 2 slices) was assessed. At weeks 6 and 12 of treatment, it was analyzed whether this necrosis remained stable or increased >25% calculated by 2 perpendicular diameters or whether necrosis developed de novo. Univariate and multivariate associations of baseline necrosis with overall survival (OS) and progression-free survival (PFS) were tested by log-rank test. Hazard ratios (HR) with 95% confidence interval were calculated by Cox model. RESULTS: Imaging necrosis at baseline was detected in 191 patients (53.2%) and was associated with worse OS and PFS in univariate, but not in multivariate analysis. Baseline necrosis was predictive for OS in the lomustine-only group (HR 1.46, p = 0.018). At weeks 6 and 12 of treatment, increase of baseline necrosis and de novo necrosis were strongly associated with worse OS and PFS in univariate and multivariate analysis (PFS both p < 0.001, OS univariate p < 0.001, multivariate p = 0.0046). CONCLUSION: Increase of and new development of imaging necrosis during treatment is a negative prognostic factor for patients with progressive glioblastoma. These data call for consideration of integrating the assessment of imaging necrosis as a separate item into the MRI response assessment criteria.


Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Necrosis/diagnostic imaging , Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , Bevacizumab/therapeutic use , Brain Neoplasms/drug therapy , Clinical Trials, Phase III as Topic , Glioblastoma/drug therapy , Humans , Lomustine/therapeutic use , Magnetic Resonance Imaging , Prognosis , Progression-Free Survival , Proportional Hazards Models , Randomized Controlled Trials as Topic
18.
Lancet Oncol ; 20(5): 728-740, 2019 05.
Article En | MEDLINE | ID: mdl-30952559

BACKGROUND: The Response Assessment in Neuro-Oncology (RANO) criteria and requirements for a uniform protocol have been introduced to standardise assessment of MRI scans in both clinical trials and clinical practice. However, these criteria mainly rely on manual two-dimensional measurements of contrast-enhancing (CE) target lesions and thus restrict both reliability and accurate assessment of tumour burden and treatment response. We aimed to develop a framework relying on artificial neural networks (ANNs) for fully automated quantitative analysis of MRI in neuro-oncology to overcome the inherent limitations of manual assessment of tumour burden. METHODS: In this retrospective study, we compiled a single-institution dataset of MRI data from patients with brain tumours being treated at Heidelberg University Hospital (Heidelberg, Germany; Heidelberg training dataset) to develop and train an ANN for automated identification and volumetric segmentation of CE tumours and non-enhancing T2-signal abnormalities (NEs) on MRI. Independent testing and large-scale application of the ANN for tumour segmentation was done in a single-institution longitudinal testing dataset from the Heidelberg University Hospital and in a multi-institutional longitudinal testing dataset from the prospective randomised phase 2 and 3 European Organisation for Research and Treatment of Cancer (EORTC)-26101 trial (NCT01290939), acquired at 38 institutions across Europe. In both longitudinal datasets, spatial and temporal tumour volume dynamics were automatically quantified to calculate time to progression, which was compared with time to progression determined by RANO, both in terms of reliability and as a surrogate endpoint for predicting overall survival. We integrated this approach for fully automated quantitative analysis of MRI in neuro-oncology within an application-ready software infrastructure and applied it in a simulated clinical environment of patients with brain tumours from the Heidelberg University Hospital (Heidelberg simulation dataset). FINDINGS: For training of the ANN, MRI data were collected from 455 patients with brain tumours (one MRI per patient) being treated at Heidelberg hospital between July 29, 2009, and March 17, 2017 (Heidelberg training dataset). For independent testing of the ANN, an independent longitudinal dataset of 40 patients, with data from 239 MRI scans, was collected at Heidelberg University Hospital in parallel with the training dataset (Heidelberg test dataset), and 2034 MRI scans from 532 patients at 34 institutions collected between Oct 26, 2011, and Dec 3, 2015, in the EORTC-26101 study were of sufficient quality to be included in the EORTC-26101 test dataset. The ANN yielded excellent performance for accurate detection and segmentation of CE tumours and NE volumes in both longitudinal test datasets (median DICE coefficient for CE tumours 0·89 [95% CI 0·86-0·90], and for NEs 0·93 [0·92-0·94] in the Heidelberg test dataset; CE tumours 0·91 [0·90-0·92], NEs 0·93 [0·93-0·94] in the EORTC-26101 test dataset). Time to progression from quantitative ANN-based assessment of tumour response was a significantly better surrogate endpoint than central RANO assessment for predicting overall survival in the EORTC-26101 test dataset (hazard ratios ANN 2·59 [95% CI 1·86-3·60] vs central RANO 2·07 [1·46-2·92]; p<0·0001) and also yielded a 36% margin over RANO (p<0·0001) when comparing reliability values (ie, agreement in the quantitative volumetrically defined time to progression [based on radiologist ground truth vs automated assessment with ANN] of 87% [266 of 306 with sufficient data] compared with 51% [155 of 306] with local vs independent central RANO assessment). In the Heidelberg simulation dataset, which comprised 466 patients with brain tumours, with 595 MRI scans obtained between April 27, and Sept 17, 2018, automated on-demand processing of MRI scans and quantitative tumour response assessment within the simulated clinical environment required 10 min of computation time (average per scan). INTERPRETATION: Overall, we found that ANN enabled objective and automated assessment of tumour response in neuro-oncology at high throughput and could ultimately serve as a blueprint for the application of ANN in radiology to improve clinical decision making. Future research should focus on prospective validation within clinical trials and application for automated high-throughput imaging biomarker discovery and extension to other diseases. FUNDING: Medical Faculty Heidelberg Postdoc-Program, Else Kröner-Fresenius Foundation.


Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Diagnosis, Computer-Assisted , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Neural Networks, Computer , Automation , Brain Neoplasms/pathology , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Databases, Factual , Disease Progression , Female , Germany , Humans , Male , Multicenter Studies as Topic , Predictive Value of Tests , Randomized Controlled Trials as Topic , Reproducibility of Results , Retrospective Studies , Time Factors , Treatment Outcome , Tumor Burden , Workflow
19.
Eur Radiol ; 29(7): 3480-3487, 2019 Jul.
Article En | MEDLINE | ID: mdl-30903330

OBJECTIVE: Detection and pattern analysis of fascicular nerve hyperintensities in the T2-weighted image are the backbone of magnetic resonance neurography (MRN) as they may represent lesions of various etiologies. The aim of this study was to assess the prevalence of fascicular nerve hyperintensities in healthy individuals with regard to a potential association with age or cerebral white matter lesions. METHODS: Sixty volunteers without peripheral nerve diseases between the age of 20 and 80 underwent MRN (high-resolution T2-weighted) of upper (median, ulnar, radial) and lower (sciatic, tibial) extremity nerves and a fluid-attenuated inversion recovery (FLAIR) sequence of the brain. Presence of peripheral nerve hyperintensities and degree of cerebral white matter lesions were independently rated by two blinded readers and related to each other and to age. T test with Welch's correction was used for group comparisons. Spearman's correlation coefficients were reported for correlation analyses. RESULTS: MR neurography revealed fascicular hyperintensities in 10 of 60 subjects (16.7%). Most frequently, they occurred in the sciatic nerve (8/60 subjects, 13.3%), less frequently in the tibial nerve at the lower leg and the median, ulnar, and radial nerves at the upper arm (1.7-5.0%). Mean age of subjects with nerve hyperintensities was higher than that of those without (60.6 years vs. 48.0 years, p = 0.038). There was only a weak correlation of nerve lesions with age and with cerebral white matter lesions, respectively. CONCLUSION: Fascicular nerve hyperintensities may occur in healthy individuals and should therefore always be regarded in conjunction with the clinical context. KEY POINTS: • MR neurography may reveal fascicular hyperintensities in peripheral nerves of healthy individuals. Fascicular hyperintensities occur predominantly in the sciatic nerve and older individuals. • Therefore, fascicular hyperintensities should only be interpreted as clearly pathologic in conjunction with the clinical context.


Magnetic Resonance Imaging/methods , Peripheral Nerves/pathology , Peripheral Nervous System Diseases/diagnosis , White Matter/pathology , Adult , Aged , Aged, 80 and over , Female , Healthy Volunteers , Humans , Male , Middle Aged , Prevalence , Prospective Studies , Young Adult
20.
J Inherit Metab Dis ; 42(1): 117-127, 2019 01.
Article En | MEDLINE | ID: mdl-30740735

BACKGROUND: Striatal injury in patients with glutaric aciduria type 1 (GA1) results in a complex, predominantly dystonic, movement disorder. Onset may be acute following acute encephalopathic crisis (AEC) or insidious without apparent acute event. METHODS: We analyzed clinical and striatal magnetic resonance imaging (MRI) findings in 21 symptomatic GA1 patients to investigate if insidious- and acute-onset patients differed in timing, pattern of striatal injury, and outcome. RESULTS: Eleven patients had acute and ten had insidious onset, two with later AEC (acute-on-insidious). The median onset of dystonia was 10 months in both groups, and severity was greater in patients after AEC (n = 8 severe, n = 5 moderate) than in insidious onset (n = 4 mild, n = 3 moderate, n = 1 severe). Deviations from guideline-recommended basic metabolic treatment were identified in six insidious-onset patients. Striatal lesions were extensive in all acute-onset patients and restricted to the dorsolateral putamen in eight of ten insidious-onset patients. After AEC, the two acute-on-insidious patients had extensive striatal changes superimposed on pre-existing dorsolateral putaminal lesions. Two insidious-onset patients with progressive dystonia without overt AEC also had extensive striatal changes, one with sequential striatal injury revealed by diffusion-weighted imaging. Insidious-onset patients had a latency phase of 3.5 months to 6.5 years between detection and clinical manifestation of dorsolateral putaminal lesions. CONCLUSIONS: Insidious-onset type GA1 is characterized by dorsolateral putaminal lesions, less severe dystonia, and an asymptomatic latency phase, despite already existing lesions. Initially normal MRI during the first months and deviations from guideline-recommended treatment in a large proportion of insidious-onset patients substantiate the protective effect of neonatally initiated treatment.


Amino Acid Metabolism, Inborn Errors/pathology , Brain Diseases, Metabolic/pathology , Glutaryl-CoA Dehydrogenase/deficiency , Brain/pathology , Dystonia/pathology , Female , Humans , Infant, Newborn , Magnetic Resonance Imaging/methods , Male
...